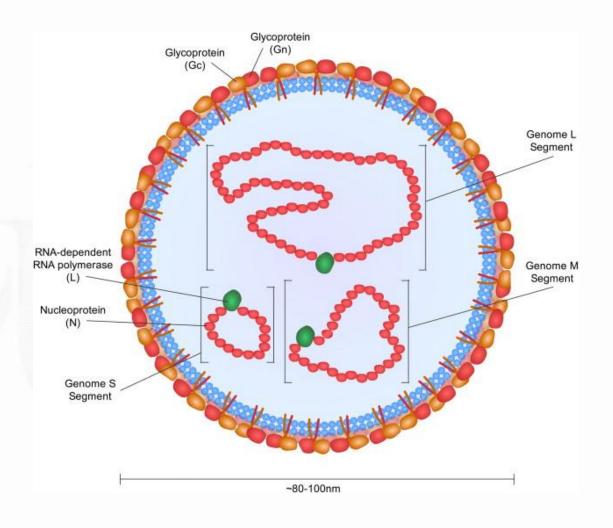


Investigation of Possible Cross-Neutralization Between Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus

¹Mesut Dilber, ²Merve Yazıcı, ^{2,3}Mehmet Ziya Doymaz

¹Bezmialem Vakıf University, Faculty of Medicine, Istanbul, Turkey

²Bezmialem Vakıf University, Beykoz Institute of Life Sciences and Biotechnology, Istanbul, Turkey


³Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey

Mentor: Prof. Dr. Mehmet Ziya Doymaz Mentee: Mesut Dilber

Crimean-Congo Hemorrhagic Fever Virus

- Agent of CCHF
- Most common tick-born human pathogen virus
- Enveloped, (-) sense, ssRNA
- Vector: Ticks, primarily from *Hyalomma* genus

Crimean-Congo Hemorrhagic Fever Disease

- Endemic in Turkey
- Incubation period: 1-13 days
- Prehemorrhagic phase:
 - Fever, headache, myalgia, nausea
- Hemorrhagic phase:
 - Petechiae, ecchimosis
 - Nose and gum bleeding
 - Pulmonary, intraabdominal, etc.
 - Excessive proinflammatory cytokine release
 - Increased vascular permeability, shock, death

Congo Fever / Crimean-Congo Hemorrhagic Fever (CCHF

It is caused due to bite by infected ticks

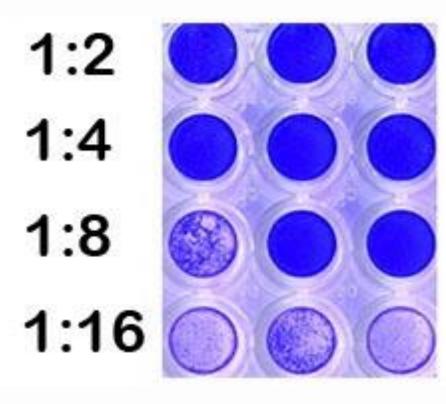
NO radical pharmaceutic approaches available NO vaccine is commercially available

Life cycle and pathophysiology is not fully understood

CCHFV should be studied under BSL-4 conditions!

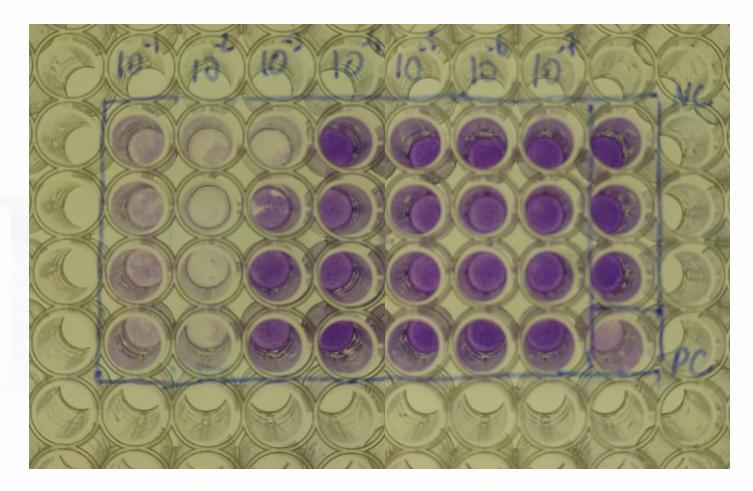
Hazara Virus As A Surrogate Model Candidate

- In the same serogroup with CCHFV
- Can be studied in BSL-2
- Does not cause disease in humans


Similarities between HAZV and CCHFV must be shown!

What Do We Suggest?

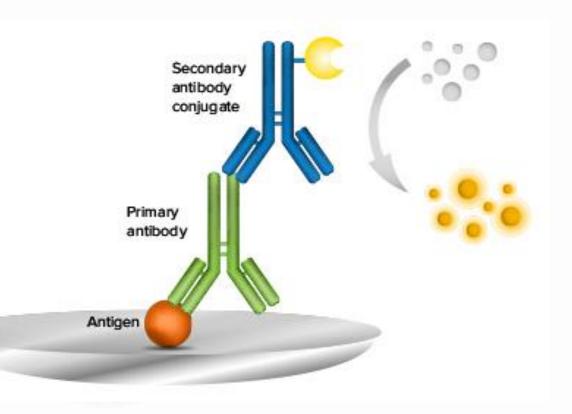
- Virus neutralization test using CCHFV-immunized sera and HAZV
- Positive result would mean:
 - External glycoproteins of CCHFV and HAZV are similar to each other
 - HAZV can be used as a vaccine against CCHFV



Methods

Tissue Culture Infectious Dose₅₀ Assay (TCID₅₀)

- Cell line: SW13
- 3000 cells/well
- 10-fold serial dilutions of the virus stock
- Cells were infected by the virus dilutions
- 6 days of incubation
- Fixation: 3,7% formaldehyde
- Staining: Crystal violet
- Virus titer was calculated using Spearman-Karber algorithm

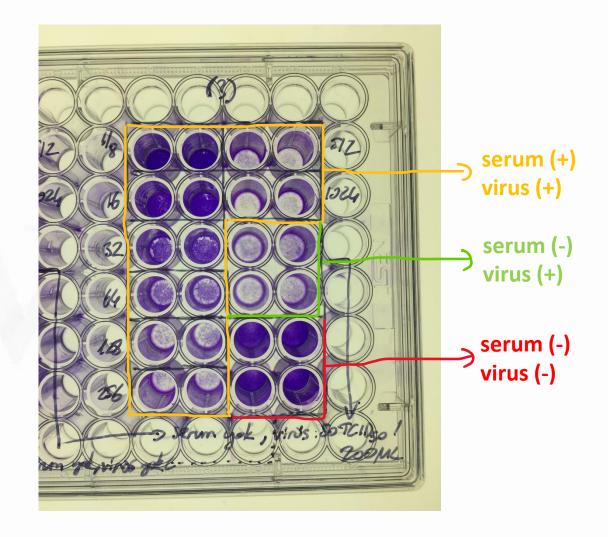


Methods

In-house ELISA

- Coating: Purified HAZV
- Wells were incubated using mouse serum dilutions in 5% skim milk
- Secondary antibody: HRP-conjugated antimouse IgG
- Cut-off value calculation: mean NC OD value
 + 2 SD

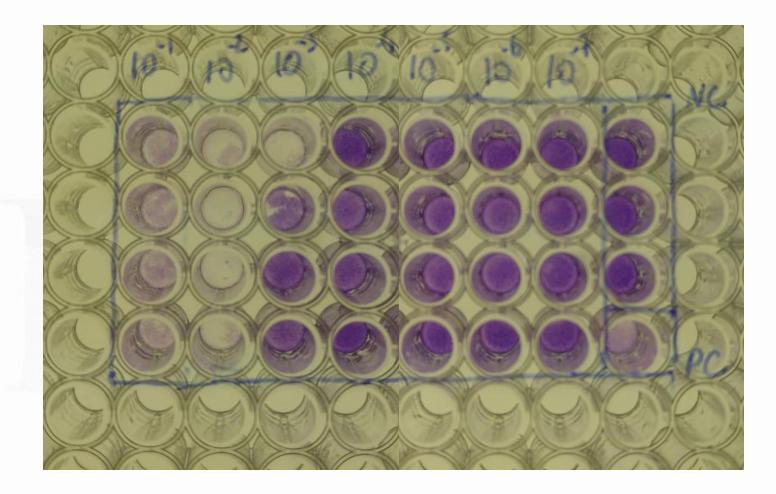
Methods – In-house ELISA

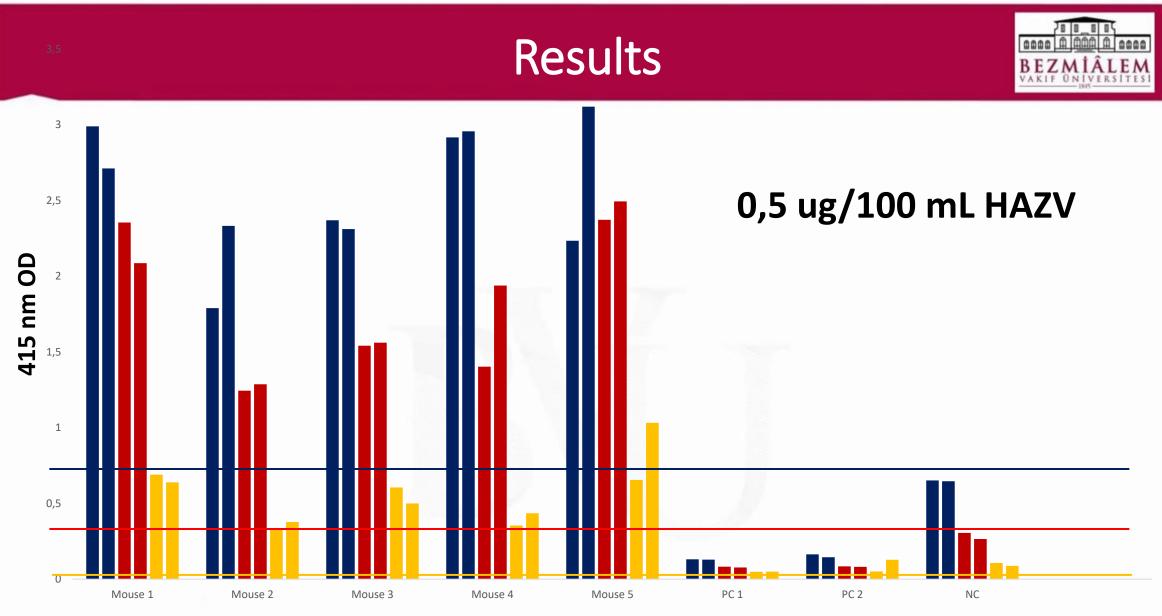

	0,5 ug/100mL HAZV						1 ug/100mL HAZV					
	1 (1/50)	2 (1/100)	3 (1/500)	4 (1/50)	5 (1/100)	6 (1/500)	7 (1/50)	8 (1/100)	9 (1/500)	10 (1/50)	11 (1/100)	12 (1/500)
А	Mouse 1			Mouse 5			Mouse 1			Mouse 5		
В												
с	Mouse 2			PC 1			Mouse 2			PC 1		
D												
E	Mouse 3			PC 2			Mouse 3			PC 2		
F												
G	Mouse 4		NC			Mouse 4			NC			
н	WOUSE 4											

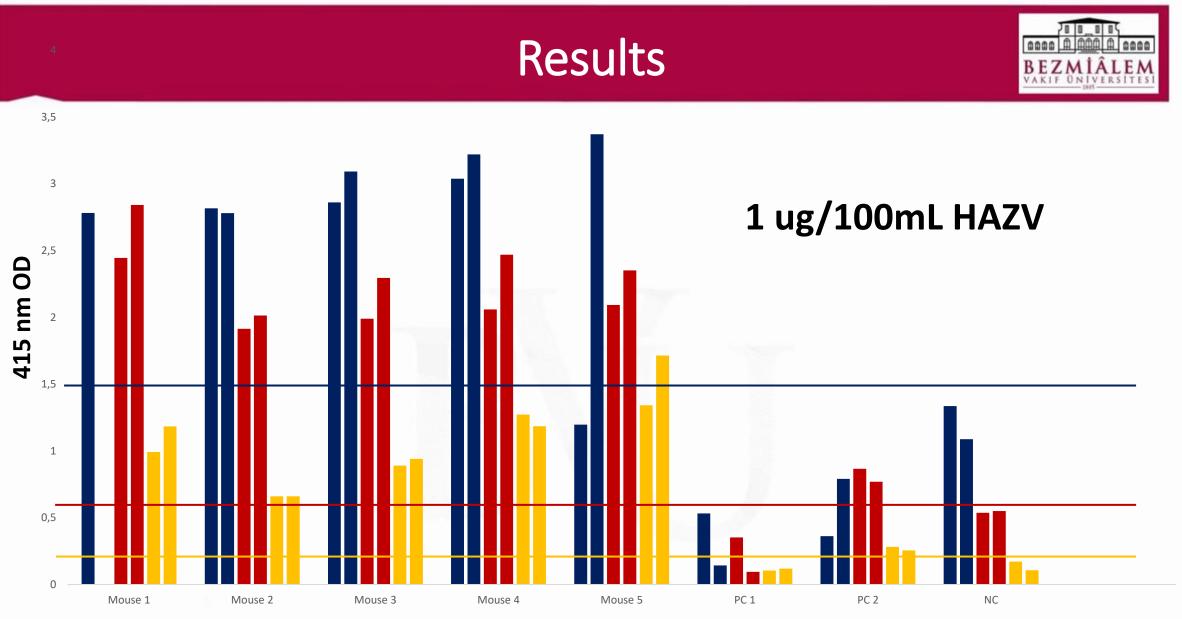
Methods

Microvirus Neutralization Test (mVNT)

- 3000 cells/well, cell line: SW13
- 2-fold serum dilutions: $1/8 \rightarrow 1/1024$
- Mix the virus and sera: 50 TCID₅₀/100uL and 100 uL of serum
- Incubate the serum-virus mixture: 1,5 hours, in 37 centigrade celcius
- Add the mixture onto the cells
- Incubation: 6 days
- Fixation and staining




Results


TCID₅₀ Assay

- The assay was successfully optimized
- Titer of the virus stocks were measured

■ 1/50 - 1 ■ 1/50 - 2 ■ 1/100 - 1 ■ 1/100 - 2 ■ 1/500 - 1 ■ 1/500 - 2

■1/50-1 ■1/50-2 ■1/100-1 ■1/100-2 ■1/500-1 ■1/500-2

Results

Microvirus Neutralization Test (mVNT)

- Anti-HAZV mouse sera against HAZV
- No neutralization observed

Conclusion

- Results of our study demonstrate that:
 - HAZV could be propagated in vitro cell culture
 - Purified as antigen and used as immunogen in animals
- Viral neutralization studies:
 - HAZV infection in cultures weren't neutralized
- An another study ¹: mVNT using HAZV and HAZV-immunized calf and sheep sera
 - No neutralization for the calf serum,
 - Neutralization for the sheep serum in 1/7 titer

Conclusion

- Challenging nature of HAZV while producing an antiserum
- This would be a limitation while using HAZV as a surrogate model
- The hypothesis should be investigated further:
 - Different immunization strategies (different animal, using glycoproteins...)
 - More sensitive methods such as qPCR

Conclusion

- Swanepoel, R., Gill, D. E., Shepherd, A. J., Leman, P. A., Mynhardt, J. H., & Harvey, S. (1989). The clinical pathology of Crimean-Congo hemorrhagic fever. *Reviews of infectious diseases*, *11 Suppl 4*, S794–S800. https://doi.org/10.1093/clinids/11.supplement_4.s794
- Committee on Anticipating Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories; National Academy of Sciences; National Research Council. Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories. Washington (DC): National Academies Press (US); 2011 Dec 15. 8, REQUIREMENTS FOR AND CHALLENGES ASSOCIATED WITH BSL-4 LABS (PLENARY SESSION) Available from: https://www.ncbi.nlm.nih.gov/books/NBK196156/
- Buckley S. M. (1974). Cross plaque neutralization tests with cloned crimean hemorrhagic fever-congo (CHF-C) and Hazara viruses. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 146(2), 594–600. https://doi.org/10.3181/00379727-146-38154
- Casals, J., & Tignor, G. H. (1980). The Nairovirus genus: serological relationships. *Intervirology*, 14(3-4), 144–147. https://doi.org/10.1159/000149175
- Smirnova S. E. (1979). A comparative study of the Crimean hemorrhagic fever-Congo group of viruses. Archives of virology, 62(2), 137–143. https://doi.org/10.1007/BF01318066
- Casals, J., & Tignor, G. H. (1974). Neutralization and hemagglutination-inhibition tests with Crimean hemorrhagic fever-Congo virus. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 145(3), 960–966. https://doi.org/10.3181/00379727-145-37933
- Hartlaub, J., von Arnim, F., Fast, C., Somova, M., Mirazimi, A., Groschup, M. H., & Keller, M. (2020). Sheep and Cattle Are Not Susceptible to Experimental Inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus Closely Related to CCHFV. *Microorganisms*, 8(12), 1927. https://doi.org/10.3390/microorganisms8121927

Thank you for your attention...